Weights of Galois Representations Associated to Hilbert Modular Forms
نویسنده
چکیده
Let F be a totally real field, p ≥ 3 a rational prime unramified in F , and p a place of F over p. Let ρ : Gal(F/F ) → GL2(Fp) be a two-dimensional mod p Galois representation which is assumed to be modular of some weight and whose restriction to a decomposition subgroup at p is irreducible. We specify a set of weights, determined by the restriction of ρ to inertia at p, which contains all the modular weights for ρ. This proves part of a conjecture of Diamond, Buzzard, and Jarvis, which provides an analogue of Serre’s epsilon conjecture for Hilbert modular forms mod p.
منابع مشابه
Automorphic Lifts of Prescribed Types
We prove a variety of results on the existence of automorphic Galois representations lifting a residual automorphic Galois representation. We prove a result on the structure of deformation rings of local Galois representations, and deduce from this and the method of Khare and Wintenberger a result on the existence of modular lifts of specified type for Galois representations corresponding to Hi...
متن کاملGALOIS REPRESENTATIONS MODULO p AND COHOMOLOGY OF HILBERT MODULAR VARIETIES
The aim of this paper is to extend some arithmetic results on elliptic modular forms to the case of Hilbert modular forms. Among these results let’s mention : − the control of the image of the Galois representation modulo p [37][35], − Hida’s congruence criterion outside an explicit set of primes p [21], − the freeness of the integral cohomology of the Hilbert modular variety over certain local...
متن کاملGalois Representations for Holomorphic Siegel Modular Forms
We prove local global compatibility (up to a quadratic twist) of Galois representations associated to holomorphic Hilbert-Siegel modular forms in many cases (induced from Borel or Klingen parabolic). For Siegel modular forms, when the local representation is an irreducible principal series we get local global compatibility without a twist. We achieve this by proving a version of rigidity (stron...
متن کاملSerre Weights and Wild Ramification in Two-dimensional Galois Representations
A generalization of Serre’s Conjecture asserts that if F is a totally real field, then certain characteristic p representations of Galois groups over F arise from Hilbert modular forms. Moreover, it predicts the set of weights of such forms in terms of the local behaviour of the Galois representation at primes over p. This characterization of the weights, which is formulated using p-adic Hodge ...
متن کاملA note on the p-adic Galois representations attached to Hilbert modular forms
We show that the p-adic Galois representations attached to Hilbert modular forms of motivic weight are potentially semistable at all places above p and are compatible with the local Langlands correspondence at these places, proving this for those forms not covered by the previous works of T. Saito and of D. Blasius and J. Rogawski. 2000 Mathematics Subject Classification: 11F80, 11F41
متن کامل